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1 Introduction

PET provides a 80% high sensitivity for detection of the primary breast malignancy, as well as for
axillary metastatic disease. What remains at issue is an inaccuracy rate high as 20% is not accept-
able to replace the invasive breast biopsies. For this reason, further improvements in detectability
of malignancy in the axilla through use of in vivo statistical imaging processing techniques are war-
ranted. This project seeks to improve detection of metastatic axillary breast cancer and decrease
the number of unnecessary breast biopsies by exploiting and identifying the metabolic informa-
tion contained within dynamic PET imaging data through developing and testing a sophisticated
computer-aided diagnosis system. Our goal is to design an intelligent system to supplement, rather
than replace, conventional diagnosis by visual inspection. The proposed study consists of four
proven tasks: Task 1: Developing the mathematical formula to linearly map and identify the
physiological features contained in PET dynamic sinogram sequence (Month 1-8), Task 2: De-
veloping the schemes for objective reduction of dynamic sinogram data guided by the identified
TAC subspaces of the desired signal (tumor) and the interference (normal tissue background plus
noise) (Month 4 - 12), Task 3: Deriving and analyzing statistical hypothesis test criteria to test
the presence of an axillary metastasis in the dynamic images reconstructed from the compressed
sinogram data (Month 13 - 24), and Task 4: Clinical Evaluation (Month 13 - 36). For each task,
several subtasks were defined, see the SOW for details.

2 Body

During this annual reporting period, the effort is mainly concentrated on Tasks 1 and 2, the
physiological feature modeling and identification and the objective rank-reduction of dynamic PET
sinogram for fast image reconstruction, that were proposed for the first year. But studying on the
rest tasks has also been performed. The major accomplishments of this activity are presented as
follows. The technical details and related results can be found in Appendices.

2.1 PET-FDG tracer kinetic models and subspace representations (for Task 1).

This project was initiated by investigation of tracer kinetics. Study of tracer kinetics involves a
radiolabeled biologically active compound (tracer) and a mathematical model that describes the
tracer kinetics. Because FDG was proposed in our protocols for collecting clinical PET data, we
have focused our attention on the PET-FDG kinetics study.

Through a literature search we have reviewed various types of mathematical models of PET-
FDG kinetics and selected a three-compartmental model (also being called 4-K compartmental
model) as a start. In a 4-k compartmental model for a homogeneous tissue, we found that each
time activity curve (TAC) is composed of several basis TAC functions.

Feng and Wang [1] used a compartmentalized model to represent tracer behavior in the blood
circulatory system, where the FDG plasma TAC was represented by a 4th-order exponential curve
with a pure decay and a pair of repeated eigenvalues. In this case, the basis TAC functions are a set
of exponential functions. But, if no special compartmental model is assumed on the arterial input
function, then each basis TAC function is a exponential function in time convolved with the arterial
input function [7]. These basis TAC functions span a subspace in terms of linear algebra, which
implies that a subspace representation of a TAC is naturally achievable for modeled or arbitrary
blood function.




The mathematical formula of TAC and its corresponding subspace representation for 4-K com-
partmental model has been extended to an arbitrary number of compartments. If certain conditions
are fulfilled, e.g., initial conditions are zero, the solutions to the TAC will simply be the sum of basis
TAC functions. Usually, the number of basis TAC functions is equal to the number of compartments
in the model.

Due to the limited spatial resolution of the PET scanner and the forward and backward processes
in a PET system, measurement of radioactivity in a homogeneous tissue is rarely, if ever achieved.
For such reason, we also studied the mixture analysis or physiological factor analysis to incorporate
the heterogeneity effects for a heterogeneous region of interest, where the mixed tissue TAC can be
represented as the mass-weighted average of physiological function in each of the finite homogeneous
tissues [2, 3]. For a mixed (heterogeneous) tissue pixel containing a finite number of J overlapping
independent homogeneous compartments, each of which is described by a physiological factor, the
TAC will be represented as a weighted sum of the J independent physiological functions. The
physiological factors (using vector notation) define a subspace with dimension J embedded in a
N-dimensional space. From the physiological factor analysis (PFA), the tissue TAC in PET is
modeled as a linear combination of the fundamental physiological functions which are called basis
in signal processing.

The details of this work on the compartmental modeling and subspace representation can be
found in Appendix A, which is a chapter of the Ph. D. thesis (draft) by Mr. C. C. Huang.

2.2 Physiological subspace identification with PET projection data (for Task
1)

Estimation of subspace parameters was previously performed on tomographic images following
reconstruction of the full dynamic sequence of projection data. The least square (LS) method of
subspace identification based on image pixels was developed in [10] and is staightforwardly extended
to a project-data-based approach during this report period. The software implementation of this
extended LS algorithm is under development. Up to date the validity of applying other techniques
proposed in [5, 6, 7] to perform subspace parameter estimation on projection data has also been
investigated. The methods in [5, 6] are restricted to specific compartmental models. [7] used a
more general modeling of spectral analysis, but only resulted in the impulse response function
(IRF) estimation. Resolving the subspace paramters from the estimated IRF is to be studied.

2.3 A method of refining the physiological subspaces for enhancement of sepa-
rability between lesions and normal tissues ( for Task 1)

Our study on PET-FDG tracer kinetic models has been shown that the kinetic features of time
activity curves (TAC) have the following properties: (a) linearly representable by a set of exponen-
tial functions, (b) physiologically distinguishable as lesion and normal tissue subspaces, (c) readily
incorporable to a matched subspace detector for lesion detection.

To identify the TAC subspace features, we use the least square error (LSE) method to determine
the lesion and normal tissue subspaces respectively. The subspaces resulted from the LSE are
optimum in terms of the fidelity to the observed data, but they may suffer from a lack of the
separability between subspaces. Therefore, we have made an effort to develop a new method
to form the subspace representation of lesion and normal tissue kinetics, which maximizes the
distance (separability) between lesion and normal tissue subspaces under the constraint that the
LSE (fidelity) of the estimated and observed TACs is less than a given value. Such refined subspaces




are incorporated into our developed subspace identifier for performance test in terms of lesion
detectability. Our results demonstrate that the subspaces identified by the new method from known
lesion and normal tissues mostly preserve the TAC kinetic features and significantly increase the
contrast of the small lesion to normal tissues compared to the LSE-only method.

This work has been presented in IEEE Medical Image Processing Conference 1999, Seattle, Wa.
November 1999. The details are described in Appendix B.

2.4 A scheme of data compression for fast dynamic PET image reconstruction
( for Task 2)

The reconstruction of dynamic PET images is time consuming. The objective of Task 2 is to accel-
erate this procedure. Previous work to speed up the dynamic image reconstruction was based on
low-order approximation using Karhunen-Loéve (KL) transform [8], [9]. Those KL transform basis
vectors corresponding to the largest K eigenvalues were retained and then used in the reconstruc-
tion process. However, with this approach the kinetic characteristic (time activity curves) of week
signals, such as non-palpable tumors, may be lost or significantly changed in the reconstructed
images. In this effort, metrics are found to select a subset of vectors from the KL transform basis,
which relates directly to maximizing signal-to-noise ratio (MSNR) or maximizing signal energy
(MSE) only .

In this study, three rank-reduction criteria were applied to lower the dimensionality of dynamic
sinogram in time domain. The simulation results show that by compressing the sinogram data
before image reconstruction, one can speed up the reconstruction of dynamic images and also
suppress the noise. The proposed maximum SNR criterion outperforms the conventional SVD and
the maximum signal energy methods in terms of enhancing lesion to background contrast in the
reconstructed images. From the measured time activity curves in the images reconstructed from the
sinograms processed with the three different rank reduction criteria, one can see that the maximum
SNR method maintains the characteristics of the lesion time activity curve, while both the SVD
and the maximum signal energy methods change the characteristics of time activity curve in the
lesion substantially. The results using computer simulation PET data show that by this approach
the contrast of small lesion to the background can be objectively enhanced. The characteristic of
time activity curve in the lesions can also be approximately kept.

Details of this new method can be found in Appendix C, which is a manuscript revised to be
submit to IEEE Trans. on Medical Image Processing.

2.5 Comparison and evaluation of kinetic features contained in OSEM and FBP
dynamic PET images (for Tasks 3 and 4)

Investigating the advantage of OSEM over FBP in revealing kinetic features contained in dynamic
PET data is a part of the effort of Tasks 4.3 and 4.4. In this achievement, three types of kinetic
features were used for the comparison: time activity curve (TAC), the compartmental model-
ing parameters and the physiological factors [4]. It is assumed that the physiological factors of
metastases are similar to primary tumors. In this study the time activity curves (TAC) in the
known lesions and normal tissues were measured from the clinical dynamic PET-FDG images re-
constructed by OSEM and FBP algorithms, respectively. The mean square errors between the
TACs obtained from the images reconstructed by the two algorithms were calculated. From the
measured time activity curves k1-k4 PET-FDG compartmental parameters were estimated using
the Newton-Raphson nonlinear parameter estimation. The estimated parameters from each set of




reconstructed images were clustered into parameter subregions according to tumor types (lung and
breast) and tissue types (normal tissue, primary tumor, and metastasis). The distance between the
clusters were computed and compared for the two reconstruction algorithms as a figure of merit for
tumor detectability. Finally the physiological factors are identified using the both reconstructions
by a statistical test criterion previously developed by our research group. Receiver operating char-
acteristic (ROC) study on both reconstruction algorithms is performed with computer simulated
phantom dynamic images. Clinical data from 16 patients (8 lung and 8 breast cancers) were used
for the study. Our results show that no significant difference is observed in the TACs obtained
from the OSEM and the FBP images, but the physiological factors identified from the metastases
in OSEM images are substantially closer to those of the primary tumors than in FBP images. We
found that the sensitivity of metastasis detection in the static FBP PET images can be improved
using the physiological feature identification from the OSEM reconstructed dynamic images.

This work has been presented in SNM annual conference 2000, San Louise, Mo. June 2000, see
Appendix D for details.

2.6 Patient data collection for clinical evaluation (Task 4)

An effort had been made to recruit a group of patients with biopsy proven primary breast cancer
and palpable lymph node involvement at the USC County Hospital through Dr. Linda Hovanessian
of the USC Radiology Department. Dr. Hovanessian recommended more than 20 patients for us to
contact. Unfortunately, only a few of them were willing to take a PET scan. Discussions with Dr.
Hovanessian concluded that patient’s lack of knowledge about the project could be the key reason
for this unwillingness. To remedy the problem, flyers with brief introduction of the project have
been made by USC PET Center to deliver to the qualified patients. We have also contacted the
group of Dr. Waiseman at USC Norris Breast Cancer Center and setup protocols with the group
for patient recruit there. We believe all this can improve the patient recruiting.

3 Key Research Accomplishments

The main accomplishments in Year 1 are

e Studying various PET-FDG kinetic models in homogeneous and heterogeneous tissues and in-
vestigating the validity of subspace representations for time activity curves (TAC) in different
tissues

e Establishing the subspace distance (or angle) as a measure to quantitatively characterize the
difference between normal and malignant tissues as well as the similarity between primary
and metastatic lesions

e Investigating methods to perform subspace parameter estimation directly on PET project
data and extending the image-pixel-based least square subspace identification method to a
scan-projection-based approach

e Developing a data compression algorithm, which is able to fast dynamic image reconstruction
and simultaneously enhance lesion-to-background (or signal-to-noise) ratio; Comparing the
new algorithm to the conventional principal components method (or SVD - singular value
decomposition) in theory and simulation




e Comparing OSEM and FBP reconstructed images in terms of revealing the difference between
normal and malignant tissues and the similarity between primary and metastatic lesions by
performing a receiver operating characteristic (ROC) study on simulated phantom and clinical
data

e Recruiting the desired patient data for clinical evaluation in coming years

4 List of Reportable Outcomes

1. C. C. Huang and X. Yu, “A New Method of Computer-Aided Feature Identification for Lesion
Detection in PET-FDG Dynamic Study” IEEE Medical Imaging Conference 1999, Seattle,
WA, November 1999

2. X. Yu, C. C. Huang and P. S. Conti, “ Comparison of Kinetic Features Extracted in OSEM
and FBP Reconstructed Dynamic PET Images for Oncology” SNM Annual Conference 2000,
San Louise, Mo., June 2000.

3. X. Yuand C. C. Huang, “A Fast Method to Compute Covariance Matrix in Positron Emission
Tomography Images”, accepted by IEEE Medical Imaging Conference 2000, .

4. P. Thanyasrisung, X. Yu and C. C. Huang “ Data Reduction for Fast Dynamic Positron-
Emission Tomography (PET) Image Reconstruction and Lesion Detection” revised for a re-
submission to IEEE Tran. on Medical Image Processing.

5. C. C. Huang, “Subspace Identification, Filtering and Identification with Applications to Le-
sion Detection in Dynamic PET Images”, Ph. D. thesis in preparation to submit to USC
Electrical Engineering Department, December 2000.

5 Conclusion

Our Year 1 effort is mainly concentrated on the physiological feature modeling and identification
and the objective rank-reduction of dynamic PET sinogram for fast image reconstruction. Studying
on the tasks for the following years has also been partially performed. The major accomplishments
of this activity show the validity of applying the sophisticated subspace signal processing tech-
niques, including subspace representation, identification, filtering and detection, to the detection
of kinetic feature of axillary metastases in mathematics. The potential extension of the subspace
parameter estimation from PET tomographic images to PET projection data, together with the
newly developed technique for objective data reduction of dynamic PET projection data, makes it
practical to detect breast cancer metastases with dynamic PET. All theoretical findings in Year 1
will be further tested and evaluated by a group of clinical patient data with proven primary breast
cancer and palpable axillary metastases in Year 2. The mathematical models and algorithms will
be validated with the results yielded from this group of patients with known lesions before applied
to another group of patients with non-palpable axillary metastases in Year 3.
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Appendix A: A Chapter of the Ph. D. Thesis (Draft) by
C. C. Huang.

Chpater 2: Principles of Tracer Kinetic Modeling in PET

2.1 Overview

Tracer kinetic techniques are generally used in physiology and biochemistry
to trace dynamic processes, such as blood flow, substrate transport, and bio-
chemical reactions. By the application of the tracer kinetic method, PET can
accurately estimate in vivo the tracer concentration, which provides functional
and physiological variables, for example, the local cerebral metabolic rates of
glucose (LCMRGIc) [52]. The tracer kinetic method involves a radiolabeled bi-
ologically active compound (tracer) and a mathematical model that describes
the tracer kinetics during a biological process. Because FDG is useful in clin-
ical PET for functional protocols (e.g., lesion detection, cardiology, neurology,
oncology), the PET-FDG dynamic study will be focused in this dissertation.

For the tracer kinetic techniques, after being injected intravenously as a bo-
lus, FDG concentration is measured to determine the transport rate constants of
FDG in physiological compartmental models [34, 52, 59, 60]. The kinetic behav-
ior of the tracer concentration in a tissue is called a time activity curve(TAC).
From the physiological factor analysis (PFA), the tissue TAC in PET is mod-
eled as a linear combination of the fundamental physiological functions which
are called basis in signal processing. By using a mathematical 4-k compart-
mental model for a homogeneous tissue, each of the basis TAC functions can
be represented as the exponential functions in time convolved with the arterial
input function [36]. For a heterogeneous tissue containing a finite number of
J overlapping independent homogeneous compartments, each of which is de-
scribed by a physiological factor, the TAC' will be represented as a weighted
sum of the J independent physiological functions. The resulting physiologicial
factos (using vector notation) define a subspace with dimension J embedded in
a total N space [40].

2.2 Tracer Kinetic Techniques

In physiological studies, measurement of reactant and product chemical concen-
trations does not provide rates of a reaction sequence, because in vivo chemi-
cal concentrations can remain constant even though the rate of a process has
changed. Furthermore, rates of disappearance or appearance of labeled reac-
tants and products provide a means for measuring the rates and pathways of
reaction sequences. The tracer kinetic techniques are among the most powerful
methods for measuring the rates of processes for increasing knowledge of the
biochemical, transport, and metabolisim of body functions.
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2.2.1 Principles of Tracer Kinetics

A small amount of detectable substrate (a tracer amount) can be introduced
into fluid, and the speed of its passage through the system can be measured.
The amount of label appearing in other chemical species will rise with some time
delay and will later decrease gradually. From the amount of time delay, the rates
of increase and decrease, and the concentration levels, the transport rates in a
dynamic system can be estimated. However, the tracer kinetic techniques are
more complicated in practical situations, e.g. the selection of tracers, the non-
steady state condition, the mixture of inhomogeneous tissues, and the design
of model for the dynamic process. Hence, it is necessary to design a tracer
kinetic model to not only follow the dynamic process of interest, but also be
mathematically tractable.

2.2.2 Tracer Kinetic Modeling: Development and Assumptions

For a tracer kinetic model [60] to approximate the real situations and to be
mathematically manageable such that the solutions or analyses of the charac-
teristics of the models are advantage .

A: Tracer selection
In tracer kinetic techniques, an appropriate tracer is required to follow the
dynamic process of interest. Usually, a tracer must have the following properties:

o structurally related to the natural substance involved in the dynamic pro-
cess (i.e., metabolic processes) or have similar transport properties (i.e.,
for flow system),

e measurable and distinguishable from the natural substance intended to be
traced.

The well-known tracer used in PET is 2-['8F]fluoro-2-deoxy-D-glucose (FDG),
which has been used to isolate the transport and phosphorylation steps from the
complicated pathway of glucose metabolism, thus enabling the formiulation of
simple tracer kinetic models for quantification of glucose utilization. DG is an
analog of glucose in which the hydroxyl group on the number 2 carbon has been
replaced with hydrogen. For PET this hydrogen is substituted for the positron
emitter 1®F, forming FDG, Figure 1 [60]. DG and FDG have been used in
biochemistry to isolate the phosphorylation reaction from the rest of glycolytic
metabolism. FDG is transported into tissue and phosphorylated to FDG-6-
phosphate (FDG-6-P) in the same manner as DG or glucose. However, because
of the substitution in the second carbon position, FDG-6-P 1s not a substrate for
the next reaction step in the metabolic pathway, Figure 2 [45]. FDG-6-P does
not leave the cell except through a slow hydrolysis back to free FDG, which
can then be transported to plasma or be rephosphorylated. Basically, FDG
behaves similarly to glucose in its transport from plasma to tissue and in its
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phosphorylation, the rate of which, under a steady-state condition for glucose,
is equal to the utilization rate of exogenous glucose. Therefore, the utilization
rate of glucose is predictable from the kinetics of FDG.

Figure 1: FDG structure.

Although there are a variety of tracers for PET cancer imaging, the most
useful is based on the increasing use of glucose by tumor cells. FDG is a struc-
tural analogue of 2-deoxyglucose which is D-glucose without an OH group in the
2-position [63]. Because of this structural alteration, 2-deoxyglucose is trans-
ported into the cancer cell like glucose, and, is phosphorylated by hexokinase.
This phosphorylation to 2-DG-6phosphate results in a polar intermediate which
does not cross cell membranes well, i.e., it is trapped in cancer cells. 2-DG can
be dephosphorylated to 2DG by glucose-6-phosphatase, but this reaction occurs
slowly, particularly in cancer cells, which commonly lack glucose-6-phosphatase.
18F attached to the 2-position of this molecule results in FDG, which behaves
in a similar fashion to 2-D@G, but the 18F emits positrons, the decay of which
can be imaged.

FDG uptake for a variety of human cancers has been shown to have high
tumor-background uptake ratios at 1-2 hour post i.v. injection [?, 64]. The
mechanisms for this increased FDG-6-phosphate accumulation in many cancer
cells has been shown to be due to [65]:

e increased expression of glucose transporter molecules at the tumor cell
surface

e increased activity of hexokinase
o reduced levels of glucose-6-phosphatase v.s. most normal tissues.

The property that cancer cells avidly accumulate FDG-6-phosphate is impor-
tant for lesion detection and is fundamental to the method introduced in this

12




1 |
{ I Glucose
l | o e} Glucose- —
l Glucose 1 Ghrcose th‘;m“
I 1
i I
FDG
i i
I oyt > _
FDG 2 DG FDG-6-P
1 &
| 1
I 1
(a)
METABOLIC CUOMPARTMENT
VARCULAR ¥
COMBARTMENT SEALE
- Giycoges
f;r ( Pénsphoryluw @
hexokinase‘_ G-;i;;o‘
Ghacose e GRICOSE 2 wfow o s ol .
o . a6y GGy,
& a2
- 2
S b F-6-P0,
= 3 ¢
o »
[l -~
e
k]
- e s e e e P SN FART R NP T —_—
2
2 hexnkiamsti
o .
e | 18, & X 18, P WBeists.g 00
A 6P x
el Membaance
(b)

Figure 2: The transport and metabolic reaction pathways of FDG compared
with glucose in tissue. (a) FDG is transported in tissue and phosphorylated to
FDG-6-P in the same manner as glllc?§e, (b) FDG-6-P is not a substrate for
the reaction step in the metabolic compartment.




dissertation.

B: Model selection
Mathematical models are often applied to incorporate the a priori informa-
tion about a process (such as biochemical sequence, membranes that must be
crossed) and to restrict the representation of the tracer kinetic behavior to a
limited set of functions in order to allow the interpretation of measurements.
For tracer kinetics, there exists various types of mathematical models of widely
different mathematical characteristics, such as deterministic versus stochastic,
distributed versus non-distributed, compartmental versus non-compartmental,
and linear versus nonlinear. In biochemical applications (e.g., PET), linear
compartmental models are most frequently used, because of their advantageous
mathematical properties that enable straightforward solution or analysis of the
model characteristics.

e Compartmental Model

A compartmental model (Figure ?7compart) is usually represented by
a number of compartments connected by a number of arrows indicating
transport between compartinents. A compartment is defined as a space
in which the tracer is distributed uniformly. The amount of tracer leaving
a compartment is assumed to be proportional to the total amount in the
compartment. The arrows indicate the possible pathways the tracer can
follow. The symbol k, the rate constant with the unit of inverse time,
denotes the fraction of the total tracer that would leave the compartment
per unit time.

e Linear Model

Generally, not many physiological processes or biochemical reactions can
be considered to be linear. However, linearity is usually valid for tracer
transport or chemical reactions given that the amount of tracer is always
very small compared with its natural counterpart, which has a constant
concentration. Because of this linearity property of the tracer, the kinetics
of a physiological or biochemical process can be completely represented by
a response function (system function). The response function of a system
will be exactly the tracer kinetics measurements from the system, if the
tracer is delivered to the system as an impulse (i.e., as a short bolus with
no recirculation).

Based on the linear compartmental model assumption, the tracer kinetics of a
compartmental model can be described in terms of a set of linear, first-order,
constant-coefficient, ordinary differential equations. If certain conditions are
fulfilled, e.g., initial conditions are zero, the solutions to the differential equa-
tions will simply be the convolution of the delivery function (input function) and
the response function of the system. The response function of a compartmental
model will consist. of a sum of exponential functions. Usually, the number of ex-
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ponential components is equal to the number of compartments in the model. If
the input function (i.e., arterial blood or plasma time-activity curve) is known,
the response function of the system can be deduced by deconvolving the input
function from the measured kinetics of the system. Thus, by analyzing the
response function in terms of exponential components, one can estimate the
number of compartments required for constructing a system model. The fact
that the response functions of many biological or physiological systems can be
decomposed into a sum of exponential components is another indication that
the compartmental models are adequate for tracer kinetics studies.

C: Assumptions wn the tracer kinetic modeling
In tracer kinetic modeling, the followings are usually assumed in order for the
model to have tractable mathematical properties:

e The tracer introduced is assumed to be in a trace amount, so that the
measured results would reflect the effect of the tracer introduction and
not represent the original process.

e The dynamic process for tracer kinetics is assumed to be in a steady state.
That is, the rate of transport or reaction of the system is unchanged with
time, and the amount of substance in any part of the system is constant
during the evaluation time. For practical systems, because biological sys-
tems continuously change to adapt the environment, there is no absolute
steady state. However, the steady state condition is considered to be
sufficient if the amount of change within the time of evaluation is minor
compared to the magnitude of the process itself. For example, the FDG
method for the measurement of glucose utilization requires a study period
of about 45 minutes or longer, during which the glucose utilization rate in
tissue may change.

e The contribution of different tissues to a tracer kinetic measurement is
another unavoidable practical problem. With the advantage of PET, the
concentration of positron-emitting in small local regions of the body can
be not only quantitatively measured, but also anatomically differentiated
to a significant degree. With the use of radiotracers and scintillation de-
tectors (individual detectors and scintillation cameras), the concentration
of positron-emission radioactivity in small local regions of the body can
be quantitatively measured with PET scanners. This capability has a
large impact on the tracer kinetic model, such that not only can the ab-
solute tracer concentration in tissue be obtained, but also anatomically
heterogeneous tissues can be delineated to a significant degree. Hence,
tracer kinetics measured from a small tissue element can be more accu-
rately modeled as a homogeneous uniform pool. As far as the transport
of tracer is concerned, the only connection between a small tissue element
and other parts of the organ or body is the tracer delivery and clearance
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through the blood flow in the tissue element. Therefore, the tracer con-
centration in the supplying blood that can be measured from peripheral
arterial blood samples or an ROI data drawn inside a PET heart images
can be considered as the input function to the tracer kinetic system in
the small tissue element. Hence, a small tissue element can be reasonably
regarded as a homogeneous uniform pool.

o As far as the transport of tracer is concerned, the only connection between
a small tissue element and other parts of the organ is the tracer delivery
and clearance through the blood flow in the tissue element. Therefore, the
tracer concentration in the supplying blood that can be measured from
the arterial blood samples can be considered as the input function to the
tracer kinetic system in the small tissue element.

2.2.3 4-k Compartmental Model for the FDG Tracer Kinetics

A: Homogeneous Tissues

The subject of a PET-FDG dynamic study, under homogeneous tissue type,
could be considered as a plasma compartment and a tissue compartment. At
the beginning of a PET-FDG dynamic study, FDG is absent in both plasma
compartment and tissue compartment. Following a bolus injection into the
plasma, the FDG concentration would initially peak in the plasma compart-
ment and later peak in the tissue compartment after FDG enters the tissue and
is phosphorylated into FDG-6-phosphate (FDG-6-P). Because of the missing
oxygen at the second carbon position, FDG-6-P can not be further metabolized
in the metabolic pathway. The transfer of FDG from the plasma compartment
to the tissue compartment is shown in Figure 3. The most common type of
models for describing the FDG transfer are linear compartmental models, in
which rate constants describe the rate of exchange of tracer between discrete
compartments. Figure 3 shows a 4k compartmental model for FDG, where the
compartments represent FDG in plasma, FDG in tissue, and phosphorylated
FDG in tissue (FDG-6-P). Phosphorylation of FDG i1s mediated by the hexok-
inase enzyme and, unlike glucose, is the terminal reaction step. The fact that
FDG does not continue to be metabolized through the glycolytic pathway is
an advantage for modeling purposes because the number of rate constants are
manageable. The rate constants in Figure 3 are defined as follows:

KT = the transport of FDG in plasma to tissue
k3 = the transport of FDG in tissue to plasma
k3 = the phosphorylation of FDG to FDG-6-P
k3 = the dephosphorylation of FDG-6-P to FDG.

The following first-order, constant-coefficient, ordinary differential equations de-
scribe the rate of change in the concentrations of FDG and FDG-6-P in a ho-
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mogeneous tissue:

KO = Kiepu) - (b + K (1) + G0
Lalll — ez - ke, 1)

where * indicates decay-corrected FDG tracer quantities, CZ(t) represents the
concentration of FDG in the tissue at time ¢, C}, () represents the concentration
of FDG-6-P (and all metabolites derived from FDG-6-P) in the same region,
and ('} (t) represents the FDG concentration in the arterial plasma. Solutions of
(1) [52] given that the initial conditions C*(0) = €, (0) = 0 show that the total
radioactivity for a homogeneous tissue, C*(t), is the sum of the free [*8F]FDG
concentration plus the concentration of metabolites, i.e.,

() = CIO+ )

I\-’f * * —ay * K\ o moent] oy YK
= m[(ks+k4—m)e ’+(0’3——]\,3—]\’,4}6 ~]@C'p(t)
= []\116_011 + 1\{36_021] o C;(t), (2)
where
]- * * * * * *\ 2 * Ik
ar = 3 [(kz + k3 +k3) - \/(ifg + k3 + k3)? *41'72]"4}
2
1 * * * * 9 * %
as = 5 |:(kr_) + k3 A+ kD) + \/(kﬁ + k3 + k1) - 4].'2]\’4]
A LY " .
My = o __10,1 (k3 + k3 — 1)
A KT
1 = v — ka — ki .
My 2 (k- k) 3

and @ denotes the convolution operator.
The radioactivity measured by the PET scanner (under noise-free assump-
tion), including the radioactivity in the cerebral blood, can be represented as

Com(t) = VC(t) + C7(2)

= WCH(t) +[Mie™" + Mae™22'] © CJ (1), (4)
where C'7 (1) is the total radioactivity measured by the scanner at time ¢; 1},
denotes the vascular space in tissue and FDG concentration in whole blood is
assumed to be V,C7(t) at time ¢ [45].

In order to characterize the complex behaviors of the realistic plasma TAC,
such as the period of zero activity at the beginning due to delay from tracer
delivery, the rapidly rising period, and the exponential-like decay period, Feng
and Wang [16] used a compartmentalized model to represent tracer behavior
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Figure 3: A 4-k compartmental model

in the blood circulatory system,where The FDG plasma TAC was represented
by a 4th-order exponential curve with a pure decay and a pair of repeated
eigenvalues:

Cx(t) = {[Bi(t — 7) = By — Bg]e™ """ 4 Bpe™?2('"") 4 Bge (="} 1(t — 1),
(5)

where A1, A2, and Az are the eigenvalues of the blood circulatory system (1/min);
B1, B2, and Bj are the coeflicients (uC’; /ml); 7 is the delay constant (min); and

l(t—r)é{ (1)’

A substitution of Eq. (5), assuming 7 to be 0, into Eq. (4) yields C

"total

ift<r

ife>r (6)
(t) as

(1) = Eite™ ' 4 Eye™ 1" 4 Fze™3' 4 Eye ' 4 Ege~t' 4 Ege ', (7)

)

where
JAN . J\lel Ai[QBl
E, = VB
TR O Ty T T —aw)
A R —M B, A[l(Bg + Bg)] [ —M-> B, Ma(B2 + Bg)]
FE: = —=V(Ba+ B3)+ 5 + 5
ol 3) (A1 —o)? Al —ap (A —a9) AL —as
A . A[lBg ]\I:{BQ
E = "I)Bf:
S V) B V)
N My B3 M+Bs3
E, = V.B:
LS I T T The—an)
n A M, B Mi(B+ + Bs) My Ba M, B3
T (A —a)? —{A = ay) Ae—a1  Az—ay
E é J"IgBl A[Q(Bg + Bg) ]\IJB? ]\v[QB;g
T im0’ —(A—a2)  Aa—ar Ag—as
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For t = t1.---,tn, N is the number of frames, the radioactivity, C7, (¢, ),

n=1,---,N, for the homogeneous tissue can be represented as a column vector
Choma = I‘pap + Thicsuetissue, (Q)
where
ue—)\,tl e~ N e~ a2ty e—/\3t1
ir:e°“’3 e—Alfg e~ *ato e—Aatg
JAN -
Fp = 5
tne N eTMIN  eTH2iN eThalN
e~ o111 e~ o121
—aiits —ajaty
A e e
Liissue = . . )
e 1IN pTo12IN
4 T a2 T
ap = {Ela E?s E37 E4] y Qtissue — [ES‘EG] . (10)

B: Heterogeneous Tissues
Due to the limited spatial resolution of the PET scanner and the forward and
backward processes in a PET system, measurement of radioactivity in a homo-
geneous tissue is rarely, if ever achieved. For such reason, the mixture analysis or
the physiological factor analysis (PFA) was used to incorporate the heterogene-
ity effects for a heterogeneous region of interest, where the mixed tissue TAC can
be represented as the mass-weighted average of physiological function in each
of the finite homogeneous tissues [?, 34, 51, 42]. For a mixed (heterogeneous)
tissue pixel containing a finite number of J overlapping independent homoge-
neous compartments, each of which is described by a physiological factor, the
TAC will be represented as a weighted sum of the J independent. physiological
functions. The physiologicial factos (using vector notation) define a subspace
with dimension J embedded in a total N space.

Hence, given that a mixed (heterogeneous) tissue pixel contains J homoge-
neous subregions with the radioactivity in each subregion j described by, from

Eq. (2),
Ci(t) = C50) + Coy(t)
]\vfj

azj =y

[(k3; + k3j — anj)e™ ' — (ag; — k3; — ki;)e™2 '] @ Cr(t),
(11)

then C*(t), the weighted average radioactivity in a heterogeneous tissue, can be
written as

J
Crt) = Y wCi()

=1
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wi; N
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4510 Cp(t),

where w; is the weighting coefficient for the jth homogeneous subregion; Mj; =
— f—lén (k3; +k3; —aqy) and Ma; = 02:\_‘;13_ (a2 — k3; — k3;); the variables Kyj,

is kaj, kaj, alj, and as; for the jth subregion in a heterogeneous tissue have
the same physiological meanings for those defined in the homogeneous tissue
case. Eq. (12) is the equation widely used in the spectral analysis of PET
dynamic studies [15, 36], where the tissue TAC is modeled as a convolution of

the measured plasma or input function with a sum of 2J exponential terms:

2J
C'*(t) — Z ,yie-ﬂ,'? ) C;(i% (13)
i=1

where +; depends on w;, Mij, and Msy; {a1j, 095l = 1,---,J} = {Bili =
-, 2J}.
A use of the plasma function in Eq. (5) results C?  (¢) in the following:

Cra(t) = VCy(t) +C(1)
J
= VCy(t) + Y wi[Mije™" + Maje=2 0 Gy (1)
Jj=1

J J
= Ejte ™' 4 Ege™ 1" 4 Fae 2" 4 Fye™' 4 Z wjEsje™1" 4 Z w; Egje™ 2!

i=1 Jj=1

where
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1

J
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The weighted average radioactivity, C7 . (t,), n = 1,---, N, for the hetero-

“total

geneous tissue can be represented as a column vector

Chetero — Fpap + Tiissuediissue (16)

where

et e~ 212t1 R Nl A e~ ont e~ o221 R T AS
- A e~ o112 e~ o122 R Nt A e~o2t2 e 22tz L. eTo2dt2
Ciicsue =

—onty —or2in L, —a1JiN —a2tyn —axin .. —aaJin
& (S € e (S € Nx2J
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P - 1, &0, 3, Big

~ JAN T -
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and I', is defined in Eq. (10).
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Abstract

Computer-aided feature identification in PET-FDG dynamic
data is crucial to assist visual inspection for small lesion
detection. It has been shown that the kinetic features of time
activity curves (TAC) have the following properties: (a)
linearly representable by a set of exponential functions, (b)
physiologically distinguishable as lesion and normal tissue
subspaces, (c) readily incorporable to a matched subspace
detector for lesion detection. To identify the TAC subspace
features, the least square error (L.SE) method is often used to
determine the lesion and normal tissue subspaces respectively.
The subspaces resulted from the LSE are optimum in terms of
the fidelity to the observed data, but they may suffer from a
lack of the separability between subspaces. In this paper, a new
method is proposed to maximize the distance (separability)
between lesion and normal tissue subspaces under the
constraint that the LSE (fidelity) of the estimated and observed
TAGs is less than a given value. Such identified subspaces
are incorporated into a matched subspace detector for lesion
detection. Results showed that the subspaces identified by the
proposed method from known lesion and normal tissues mostly
preserve the TAC kinetic features and increase the contrast of
the small lesion to normal tissues compared to the LSE-only
method.

I. INTRODUCTION

Positron emission tomography (PET)-scanning of [*®]F
fluorodeoxyglucose (FDG)-labeled tissues is becoming useful
for the non-invasive diagnosis of cancer [1]. However, as with
all nuclear medicine imaging technologies, lesion detection
with PET-FDG is restricted by a relatively limited spatial
resolution and a low signal-to-noise ratio, both rendering
diagnosis by visual inspection difficult and potentially
inaccurate, especially when the lesion diameter is less than 1
cm. Hence, computer-aided detection algorithms, e.g., feature
identification, have been developed to assist visual inspection
in PET tumor detection. The difficulty in computer-aided
detection is that spatial features such as the shape or contrast of
a lesion often vary from case-to-case and are hardly to identify.

It has been shown [4] that the kinetic features of time activity
curves (TAC) from PET-FDG dynamic data have the following
relatively invariant properties: (2) linearly representable by a

' This work was supported in part by STOP CANCER Foundation
and the U.S. Army Breast Cancer Research Project.
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set of exponential functions, (b) physiologically distinguishable
as lesion and normal tissue subspaces, (c) readily incorporable
to a matched subspace detector for lesion detection. To identify
the TAC subspace features, the least square error (LSE)
criterion is often used to estimate the lesion and normal tissue
subspaces, respectively. The subspaces resulted from the LSE
are optimum in terms of the fidelity to the observed data, but
they may suffer from a lack of the separability between lesion
and normal tissue when used for lesion detection. In order
to enhance the lesion detection performance, we propose a
new method for subspace identification which maximizes the
separability (subspace angle [3]) between lesion and normal
tissue subspaces and simultaneously preserves the fidelity
of the estimated and observed TACs to a certain extent. A
matched subspace detector utilizing the generalized likelihood
ratio test [7] is applied to demonstrate the lesion detection
improvement by the new subspace identification.

II. 4-K COMPARTMENTAL MODEL ANALYSIS

From a physiological compartment model analysis, a
PET-FDG dynamic study can be interpreted as describing
the passage of administered tracer through a finite number
of independent homogeneous compartments [5, 6]. Each
compartment is associated with a particular dynamic structure
in the study and is described by a fundamental TAC (a
physiological factor or a subspace basis). In this paper, the
homogeneous model is assumed for the tissue region of
interest (ROI) [8]. Fig.1 (a) shows a common 4-k compartment
model for the FDG transfer in a homogeneous tissue: FDG in
plasma (C; (t)), FDG in tissue (C7(t)), and phosphorylated
FDG, FDG-6-P, in tissue (C7,(t)), where k;s are the tracer
exchange rates between the compartments and = indicates
decay-corrected FDG quantities. The following equations
describe the rate of change in the concentrations of FDG and
FDG-6-P

ZC"*. t - * * LEd
LU o K - (5 + B)CE 0 + K50,
C[C';;’l(t) —_ Lk Tk e

Given that the initial conditions ("} (0) = C7,(0) = 0, solutions

of (1) show that the total tissue radioactivity, C'*(t), is the
sum of the free FDG concentration plus the concentration of
metabolites, i.e.,

C7(t) = C2{t) 4+ C3, (1) = [A1e™ = Age™ L G (7). ()
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and @ denotes convolution. Under the homogeneous
assumption, the PET-FDG time activity curve can be described
as

Caat) = Vol (t) + (1= Vo) - C*(1)
= "':1(7;( ) + [17\[16_%' - ;7\2[38"02'] (& C';(f), )
A . A . .
where M; = (1 — V;)A; and M. = (1 — V,)A+. The input
plasma function, C; (t), in (4) is often measured. In this paper,
C;(t) is modeled as a function given in [2]

Cy(t) = [Bi(t—71)— Ba— Bgle "
+B:’e—,\211—r) +B36—A3(i-r)’ (5)
where A1, Aa, and A3 are the eigenvalues of the blood circulatory
system (1/min); Bi, Ba, and B3 are the coefficients (x.C;/ml); 7
is the delay constant (min). A substitution of (5) into (4) yields
the following expression for C'%_ (1),

C'l:m]('l‘.) = Elte_“' -+ EQC_M' + E3e_*’~" - qu_xy
+FEse™ ' + Ege™ 2", 6)
where {F1, Es, E3, E4, E5, Es} denote the coefficients of

the corresponding exponential functions. In (6), the first four
terms, denoted by the set Z = {te~*1" e~*1" e~*2" e~*3'}, are
contributed from the input plasma function and are common

for all tissues, while the last two terms depend on the different
tissue types and are denoted by the sets £ 2 {e“‘(x”', e " g)’}
»;xb)'}, where the superscripts (/) and (b)

(b),
are for lesion and normal tissues, respectively.

and B £ {e=1

III. SPATIAL-TEMPORAL DATE AND SUBSPACE
IDENTIFICATION
Let P denote the number of pixels in an ROI and /A" be the
frame number in a PET-FDG dynamic study, the observations of

K TAC samples, C';,,,(t;) in (6), in the p-th pixel of the ROI
can be represented as

—/':otal (1‘1\' )]T + n,
@)

[ —"t*otal(tl)* 7';otal(13)v T

Q6, +mn,.

Y, =

I

where Hp é [E1p~ E:’p~ S E(;’;p]T and p = 1,2,...,P. Each
column of the matrix Q is composed of one exponential
function in (6) sampled at #;.---,{x. For a TAC in a lesion,
Q = [I, L], while for a TAC in normal tissues, Q = [I.B].
The notations I, L, and B are vector representations of the scts

Z, £, and B, respectively. In (7), n, denotes the noise and is 3

assumed to be white Gaussian. Then, the PET-FDG dynamic
data can be formed into a spatial-temporal matrix

Mixr £ [y1,¥2, . ¥s) = QA+ N, ®)

A A
where A = [601,02,---,0:] and N = [nj,na, ---,npl.
The matrix Q is unknown and often estimated from the
spatial-temporal data matrix M using the least square error
(LSE) criterion. If the data matrix M contains a known tumor
(or normal tissue), the column vectors of Q the estimate of Q,
span a lesion (or normal tissue) subspace. Thus the estimation
of unknown parameters of () is also called the subspace
identification. In this paper, the unknown parameters of
exponential vectors in ) are estimated by the Newton-Raphson
algorithm [6] from data M, which achieves the least square
error.

IV. SUBSPACE REFINING FOR LESION
DETECTION

The lesion and normal tissue subspaces estimated
individually by the least square error (LSE) method from
the known types of tissue data generally capture the most
characteristics of lesion and normal tissues, respectively. But
the two resulting subspaces may be so close to each other
that hardly to be separated. The subspace refining post to the
subspace identification is to select two subsets of bas1s vectors
(column vectors) from the identified subspaces Q') = [I.L]
and Q¥ = [I, B] based on the subspace distance maximization
(separability) between the two candidate subsets, subject to
the condition that the LSEs (fidelities) are less than given
values. The sets, L and ]§, must be included in the selected
subsets for lesion and normal tissues, respectively, because they
characterize different tissue types in (2). Thus, the problem is
simplified to choose basis vectors from the input plasma vector
set I which is common for all tissue types. Usually, three basis
vectors are enough to represent the TAC subspace features [4],
therefore, only one basis vector is needed from i to form the
lesion subspace H and normal tissue subspace S, respectively.
The new criterion is described as follows: given H' = LuU{h}
and S’ = B U {s}, where the vectors h,s € I,

H,S = arg max distance {H',S'} | subject to

IIM—PgM||r <e and ||[M —-Pg M|z <€, (9)

where distance {H,S} is the subspace distance defined
as distance {H,S}=y/1—1{, (r, is the largest principal
correlation coefficient between H and S, [3]), M is the
PET-FDG dynamic data in (8), Pz is the orthogonal projection
matrix onto the subspace of H, || - || denotes the Frobenius
norm, and ¢; and e» are the thresholds set for the least square
error.

V. MATCHED SUBSPACE DETECTION

From the K'-dimensional data y, we must decide between
two possible hypotheses regarding how the data was generated

0 [7]. Based on a replacement model, the null hypothesis H; says




that the data consists of a sum of normal tissue signal x and
noise ng; the alternate hypothesis 5, says that the data consist
of a sum of lesion signal x; and noise n;. That is

Ho:y=x0+mng and H;:y=1x; +n;. (10)
The noise n; is assumed to be normal with zero mean and
covariance matrix "'-:'2 I, and the signal x; is assumed to obey the
linear subspace model

X0 Sé, SEREX peR, t< kK —p,

X3 HO, HeREXP gcRr, (11)
where H@ is a lesion-bearing signal that lies in the lesion
subspace (H), S¢ is a normal tissue signal that lies in the
normal tissue subspace (S), and 6 and ¢ are the corresponding
coefficients. The columns of H and S are the basis for the
subspaces (H) and (S), respectively. The subspaces (H) and
(S) are not orthogonal, but they are linearly independent. Then

the detection problem becomes a test of the distributions

Hy:y:N[S¢,o01] and H,:y:N[HO,071). (12)
The likelihood ratio test can be written as
18,03y
ly) = (—1_,)
l@,05:y)
aN ~K/2 ;
_ (4 = a2
= (3) " en{-gluli+ gt} a3

Hence, the generalized likelihood ratio test (GLRT) can be
derived by substituting the maximum likelihood estimate
(MLE), ¢; and n;, of o; and n;, respectively,
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" whereny = Pty,n; = Phy, and o7 +lngl3. Itis
more convenient to replace the GLRT by the (/A'/2)}-root GLRT.
hence, the GLRT for the replacement hypothesis model becomes

_ Il _ y"PLy
i3 = yTPhy

Lr(y) = [l(y)]*/* (15)

VI. EXPERIMENT AND RESULT

Two PET-FDG dynamic studies, one lung cancer and one
breast cancer, acquired with the USC ECAT953 scanner, were
used in this paper. Fig.2 (a) showed the lung cancer FBP
image in the dynamic data, where two 5 x5 ROIs were selected
from one known lesion (L1) and one normal tissue (BG), and
their corresponding TACs were plotted in Fig.2 (b). Also one
plasma ROI was drawn from the heart area for the plasma
parameter estimation. The L1, BG, and plasma ROI data were
used to estimate the parameters in (6) by the Newton-Raphson
method [6] to form the matrix L, B, and I, from which two
sets of basis vectors were selected to form the subspaces for
lesion (H) and normal tissue (S) by using the new criterion in
(9). The fidelity between the estimated TAC by the identified
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subspaces and the observed TAC was shown in Fig.2 (c-d). The
separability was demonstrated in Fig.2 (e) by projecting the L2
TAC (shown in Fig.1 (a)) onto the identified lesion and normal
tissue subspaces, respectively. The refined subspaces by the
new criterion were applied to the matched subspace detector in
(15). The GLRT was performed on the test region indicated
by a rectangle in Fig.2 (f). The result was shown in Fig.2 (h).
It was demonstrated that the contrast of the small lesion (L2)
to the normal tissues was improved compared to the previous
detection result [4] shown in Fig.2 (g) which was obtained by
the LSE-only criterion. Fig.3 (a-f) showed the results for the
breast cancer study by applying the proposed method. The
comparison of the lesion-to-background contrast enhancement
was shown in Table 1.

VII. CONCLUSION

In lesion detection with PET-FDG dynamic studies, kinetic
features (subspaces) of the time activity curves (TAC) are
usually estimated by the least square error (LSE) method.
In this paper, a new method was demonstrated to maximize
the distance (separability) between lesion and normal tissue
subspaces under the constraint that the LSEs (fidelity) of the
estimated and observed TACs are less than given values.
Such identified and refined subspaces are incorporated into
a matched subspace detector for lesion detection. Results
showed that the subspaces obtained by the proposed method
from known lesion and normal tissues mostly preserve the TAC
kinetic features and increase the separability of the small lesion
from normal tissues compared to the LSE-only method.
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Fig. 2 Lung cancer study (a): A PET-FDG dynamic lung cancer image with three ROIs selected: L1 (big lesion), L2 (small lesion), and BG
(normal tissue). (b): TACs for L1 (upper), L2 (middle), and BG (lower). (c-d): Fidelity test: the L1 and BG TACs represented by their own
estimated subspaces. (e): Separability test: the L2 TAC represented by the estimated lesion and normal tissue subspaces. (f): A test region
indicated by a rectangle. 3-D mesh of the GLRT detection result by {g): the LSE-only method, and (h): the proposed method.
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Fig. 3 Breast cancer study (a): A PET-FDG dynamic breast cancer data with two ROIs selected: lesion (right) and normal tissue (left). (b):
Input plasma ROL (c): A test region indicated by a rectangle. (d): 3-D mesh of the test region. 3-D mesh of the GLRT detection result by (e):
the LSE-only method, and (f): the proposed method.

Table 1: Lesion-to-Background Contrast Enhancement
peak value in lesion ROI
mean value of background

. A
Lesion-to-background contrast =

Contrast in Contrast in GLRT Contrast in GLRT Contrast Contrast
Dynamic Study | Original Image | by the LSE-Only Method | by the New Method || Enhancement | Enhancement
(@ (b) (© (c) o (a) (c) to (b)
Lung Cancer 4.29 4.32 4.55 6% 5%
(small lesion: L2)
Breast Cancer 5.7 73 12.9 126% T7%
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Abstract

The reconstruction of dynamic positron emission tomograph (PET) images is time consuming. Pre-
vious work to speed up the dynamic image reconstruction was based on low-order approximation using
Karhunen-Logve (KL) transform. Those KL transform basis vectors corresponding to the largest K
eigenvalues were retained and then used in the reconstruction process. However, with this approach the
kinetic characteristic (time activity curves) of week signals, such as non-palpable tumors, may be lost
or significantly changed in the reconstructed images. In this paper, a metric is found to select a subset
of vectors from the KL transform basis, which relates directly to maximizing lesion-to-background ratio
(signal-to-noise ratio). The results using computer simulation PET data show that by this approach
the contrast of small lesion to the background can be objectively enhanced. The characteristic of time
activity curve in the lesions can also be approximately kept.

1 Introduction

In a dynamic positron emission tomographic (PET) study, multiple frames of sinogram are acquired and
formed into a multi-frame raw data matrix. Each frame is observed at a different time. In the conventional
dynamic PET image reconstruction, each frame of data matrix is reconstructed separately by the filtered
backprojection (FBP), which is an approximation of the inverse Radon transform. From these frames of
reconstructed images, a diagnosis of the abnormal tissue (or malignant lesions) can be made by examining
the differences in kinetics of the time activity curve between the normal and abnormal tissue [3].

The conventional dynamic image reconstruction is highly time consuming. Also the reconstructed images
are often noisy. Recent efforts have been made to suppress noise level in the sinogram, while lowering the
computation complexity by the reduction of data dimensionality in time domain. Research in [4], [6] shows
that by compressing the data with the sample-estimated Karhunen-Logve (KL) transform along the time
axis of the sinogram data, one can speed up the reconstruction procedure and also suppress the noise. In
this approach one keeps only K dominant eigenvalues of the sample-estimated covariance matrix in time
and the corresponding eigenvectors. In this manner, the amount of compressed data tends to minimize the
distortion from the original data. For example, if the number of frame is 28, then keeping only K = 5 of
the eigenvectors in the KL transformation can basically secure the fidelity of the main structures in the
reconstructed images. Thus the image reconstruction can be significantly speeded up by reconstructing 5
frames of the KL transformed sinogram, instead of 28 frames.

However, by keeping the K eigenvectors which have the dominant eigenvalues in the KL transform,
weak structures of lesions may be lost in the reconstructed images, because such weak signals may not be
of sufficient strength in these K kept dominant components. In the application of dynamic PET imaging

*This work is partially supported under the U.S. Army BCRP Idea Award.
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to oncology, what desired is a rank-reduction algorithm that can keep the energy of weak lesions in the
~ dimension-reduced data while suppressing the noise. It is also important that rank-reduction processing is
able to retain the same difference of time activity curve between the normal and abnormal tissue as it would
be without the rank reduction.

2 PROPOSED METHOD

To accomplish such a desired rank-reduction, let’s first describe the data model to be used. It is well-known
that PET raw sinogram can be approximated by the following discrete-imaging model,

E{Qk} =hy, k=12,...,L (1)

where L is the total number of frames in a dynamic acquisition, y , is an M x 1 vector obtained by a lexico-
graphic ordering of the sinogram data matrix at frame k, y , is an [V x 1 vector obtained by lexicographically
ordering the original image data matrix at frame k and h is the M x N system matrix which represents the
forward-projection process (i.e. the discrete Radon transform). The sinogram data {y ,\.}AL-=1 are collected by
a PET scanner. The filtered backprojection of the sinogram data is utilized to estimate or reconstruct the
images {p, }£_,-

In our newly proposed method, the sample-estimated covariance matrix is first computed along the time
axis of the data. Then K of L coefficients and the corresponding eigenvectors are selected by the maximum
SNR per basis vectors criterion. Such selected K frames of KL transformed sinogram are reconstructed as
K frames of KL transformed images. Then an inverse KL transform is performed on these K frames of the
transformed image to obtain L frames of the original images. To see this, write eq.(1) in the following vector
form,

E{y} = Hyp, (2)
where
o=l gl
= [y, -yl
3)
are LN x 1 and LM x 1 vectors, respectively, and
h 0
h
H = . 4)
0 h

is the LM x LN matrix which represents the operator of an L-frame forward projection or discrete Radon
transform.
Also let 3 denote the KL-transform of the sinogram data vector y, i.e.,

¥ = Ay, (5)

and
A = ‘I’T & Iy, (6)

where I; denotes the M x M identity matrix, and ® denotes the Kronecker product. Next let @, the KL
transformation matrix, be defined by the equation,

Ct‘ime — @A@T (7)

Here C'"™° is the temporal covariance matrix of the PET sinogram sequence and A = diag(A1,...,AL)
is a matrix of the eigenvalues of C!¥"¢. Without loss of generality, it can be assumed that the entries,
A1, A2, ..., Ar, of the diagonal matrix A, are in a descending order. In the approach in [4], [6], the K
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eigenvectors, denoted by ¢1, ¢2, ..., ¢k, which correspond to the first K eigenvalues Ay, A2, ..., Ak, are

* chosen to perform a rank-reduced KL transformation given by

}:’svu = Asvo.Y; (8)
where A
Asyp = (I).;I—VD ®Ip (9)
with the matrix ®4,, defined by
@SVD = [¢17 ¢27 eeey ¢K]' (10)

In our approach, the criterion of the maximum signal-to-noise ratio (SNR) per basis vector is to simulta-
neously reduce the rank (or dimension) of the sinogram data in time domain and to enhance the signatures of
weak lesion signals. To compute the SNR one needs prior knowledge of the lesion’s kinetic signature. There
are various methods to estimate the lesion kinetics either directly from raw dynamic sinogram sequence or
from reconstructed image sequence [8][7]. In this paper, one assumes that the kinetics of lesion is known
and denoted by s. With knowledge of the lesion kinetic signature, taking the K maximum terms in the
summation, which is known as the expression of (lesion) signal-to-noise ratio ,

ST(Ctime)—ls — ST(‘I’A—ICI)T)S (11)

yields the desired subset of basis functions for the rank-reduction. This metric, in other words, is to choose
T 2

K from L eigenvectors, resulting K maximal %, among k =1,2,..., L. Let the selected K eigenvectors

be the column vectors of matrix ®¢yz, then the rank-reduced sinogram by the criterion of the maximum

signal-to-noise ratios (SNR) per basis vector is

):'SNR = AyzrYy, (12)
where R
Agvrn =@, . 1. (13)

Besides the maximum SNR per basis vector criterion, the other criterion studied in this paper for the
purpose of comparison is the maximum signal energy per basis vector. Differing from the criteria of maximum
eigenvalues and the maximum SNR per basis vector, the objective function of the maximum signal energy
per basis vector is to select K out of L eigenvectors which maximize the variable |s' ¢y|?, for k = 1,2, ..., L,
in the expression of lesion signal energy

s's = s (®07)s (14)
L
= Y IsTenl
k=1

Let ®,,5- denote the matrix formed by the K eigenvectors selected in this manner. Then one has

~ ~

VYuse = Ausey, (15)
where A
AMSE = ‘I);\r,SE & II\/[- (16)

3 Simulation Results
A computer-simulated 28-frame dynamic phantom was used to demonstrate the performance of the rank-

reduction algorithms. The simulated phantom consisted of five circular regions, see Fig. 1 for the phantom
image. The smallest circle represents a lesion, the sencond smallest corresponds a heart, and the rest circles
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represent the other parts of a chest image. The time activities in lesion, heart and normal tissues, which
" are obtained from a clinical PET scan and shown in Fig. 2, are assigned to the “tissues” in these circles,
respectively. The “tissues” in the three larger circular regions in the images share the same time activity
curve.

Three rank-reduction algorithms were applied to the simulated phantom in order to compare their perfor-
mance. All three algorithms started with computing the sample-estimated covariance matrix of the sinogram
data along time axis. Three different metrics were used to select K = 5 out of 28 eigenvalues and the cor-
responding eigenvectors. The first algorithm uses the maximum eigenvalue metric (also denoted as SVD
method in this paper) , which keeps the K eigenvectors corresponding to the largest eigenvalues. The sec-
ond employs the maximum signal-energy metric, and the third is the proposed algorithm which yields the
maximum SNR per basis vector.

The steps of the simulation are summarized as follows.

Step 1: Generating 28 frames of sinogram data by the forward projection of the 28-frame phantom image
sequence;

Step 2: Computing the sample-covariance matrix of the sinogram data along time axis;

Step 3: Applying the following 3 different metrics to reduce the rank (dimension) of the sinogram data in
time domain
e Maximum eigenvalue (SVD)
e Maximum signal (lesion) energy (MSE)
e Maximum signal to noise ratio (SNR) per basis vector
Step 4: Selecting K = 5 from L = 28 eigenvectors according to the above three different criteria and
forming the rank-reduced KL transformation matrices ®sv 5, ®arse, Psnr, respectively;
Step 5: Reducing the rank of the sinogram y by applying the transformation A(.) = <I>(T,) ® Ipr to the
sinogram y. The resulting rank-reduced sinogram denoted by ):'(,) is given by

}:’(.) = A(~)y (17)
where the subscription (-) represents three different criteria: the SVD, MSE or SNR;
Step 6: Reconstructing the rank-reduced images from the rank-reduced sinogram ):f(,) by the FBP;

Step 7: Expanding the rank-reduced images into a full rank by taking the corresponding inverse KL
transformations.

The simulation results are shown in Fig, 3. From the reconstructed images of the 1! frame, shown in Fig.
3 (b) - (d), the maximum SNR per basis vector criterion provides the best performance. The weak lesion
(the smallest circular region), which is invisible in the FBP image reconstructed from the original sinogram
without rank-reduction, becomes visible in the 1% frame image obtained by the maximum SNR criterion.
At the 28" frame, lesion to background contrast in Fig. 3 (j) was reduced by the conventional SVD method
compared to the original FBP reconstruction shown in Fig. 3 (i).

Fig. 3 (m) - (p) present the time activity curves of the lesion measured in the images reconstructed
from the original sinogram and the sinograms processed with the maximum eigenvalue (SVD) criterion, the
maximum signal (lesion) energy (MSE) criterion and the maximum SNR criterion, respectively. In both the
SVD and MSE methods the time activity curves in the lesion were significantly changed.

4 CONCLUSION

In this paper, three rank-reduction criteria were applied to lower the dimensionality of dynamic sinogram
in time domain. The simulation results show that by compressing the sinogram data before image recon-
struction, one can speed up the reconstruction of dynamic images and also suppress the noise. The proposed
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maximum SNR criterion outperforms the conventional SVD and the maximum signal energy methods in
terms of enhancing lesion to background contrast in the reconstructed images. From the measured time
activity curves in the images reconstructed from the sinograms processed with the three different rank re-
duction criteria, one can see that the maximum SNR method maintains the characteristics of the lesion time
activity curve, while both the SVD and the maximum signal energy methods change the characteristics of
time activity curve in the lesion substantially.
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Figure 1: (a) The phantom image. (b) Clinical TACs used for dynamic phantom simulation: *-’ for normal
tissue, ’x’ for lesion, and o’ for heart.
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Figure 2: Reconstructed images: (a), (b), (¢) and (d): the reconstructions of the 1% frame, where “FBP”,
“SVD”, “MSE” and “SNR” represent the reconstructions from the original sinogram, and the sinograms
processed by the SVD, MSE, and maximum SNR methods; (e), (f), (g) and (h): the reconstructions of the
16" frame; (i), (j), (k) and (1): the reconstructions of the 28" frame; (m): the TACs of the lesion (the smallest
circular region) in the phantom (solid line) and in the images reconstructed with no data compression (line
with crosses); (n): the TACs of the lesion in the images reconstructed with no data compression (solid line)
and with the SVD compression (line with crosses); (0): the TACs of the lesion in the images reconstructed
with no data compression (solid line) and with the MSE compression (line with crosses) (p): the TACs of
the lesion in the images reconstructed with no data compression (solid line) and with the maximum SNR
compression (line with crosses);
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